Combining Low-Level Features for Semantic Extraction in Image Retrieval
نویسندگان
چکیده
An object-oriented approach for semantic-based image retrieval is presented. The goal is to identify key patterns of specific objects in the training data and to use them as object signature. Two important aspects of semantic-based image retrieval are considered: retrieval of images containing a given semantic concept and fusion of different low-level features. The proposed approach splits the image into elementary image blocks to obtain block regions close in shape to the objects of interest. A multiobjective optimization technique is used to find a suitable multidescriptor space in which several low-level image primitives can be fused. The visual primitives are combined according to a concept-specific metric, which is learned from representative blocks or training data. The optimal linear combination of single descriptor metrics is estimated by applying the Pareto archived evolution strategy. An empirical assessment of the proposed technique was conducted to validate its performance with natural images.
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملA survey of semantic multimedia retrieval systems
A growing number of research approaches are focusing on combining multimedia retrieval processing with semantics and knowledge based methods in order to achieve higher-level understanding of multimedia content. This research direction, often called semantic multimedia, combines techniques such as low-level multimedia feature extraction and common semantic representation schemes for features and...
متن کاملUsing Image Mining for Image Retrieval
In this paper a new method for image retrieval using high level semantic features is proposed. It is based on extraction of low level color, shape and texture characteristics and their conversion into high level semantic features using fuzzy production rules, derived with the help of an image mining technique. DempsterShafer theory of evidence is applied to obtain a list of structures containin...
متن کاملSemantic Gap in CBIR: Automatic Objects Spatial Relationships Semantic Extraction and Representation
The explosive growth of image data leads to the need of research and development of Image retrieval. Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the use...
متن کاملA Comparative Study on Various Techniques for Image Retrieval
In the digital world, there is a rapid increase in data that is being generated everyday. Obviously, the image data growth is also more. So from a large database containing images it is really hard to mine retrieve images that are relevant for the query. Image Retrieval is a significant research area in the domain of image processing. It contains features for extraction such as shape, texture, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007